
Eurographics Conference on Visualization (EuroVis) 2019
M. Gleicher, H. Leitte, and I. Viola
(Guest Editors)

Volume 38 (2019), Number 3

A stable graph layout algorithm for processes

Robin J.P. Mennens1,2 , Roeland Scheepens2 and Michel A. Westenberg1

1Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands
2ProcessGold, The Netherlands

Abstract
Process mining enables organizations to analyze data about their (business) processes. Visualization is key to gaining insight
into these processes and the associated data. Process visualization requires a high-quality graph layout that intuitively repre-
sents the semantics of the process. Process analysis additionally requires interactive filtering to explore the process data and
process graph. The ideal process visualization therefore provides a high-quality, intuitive layout and preserves the mental map
of the user during the visual exploration. The current industry standard used for process visualization does not satisfy either
of these requirements. In this paper, we propose a novel layout algorithm for processes based on the Sugiyama framework.
Our approach consists of novel ranking and order constraint algorithms and a novel crossing minimization algorithm. These
algorithms make use of the process data to compute stable, high-quality layouts. In addition, we use phased animation to
further improve mental map preservation. Quantitative and qualitative evaluations show that our approach computes layouts
of higher quality and preserves the mental map better than the industry standard. Additionally, our approach is substantially
faster, especially for graphs with more than 250 edges.

CCS Concepts
• Human-centered computing → Graph drawings; • Applied computing → Business process monitoring;

1. Introduction

Process mining [Aal16] is a discipline that is quickly gaining pop-
ularity among businesses. Using process mining, organizations are
moving from a gut-feeling approach, in which organizations have
to spend many hours to understand their processes, towards a fact-
based approach, where organizations can make data-driven deci-
sions. Processes are managed using process-aware information sys-
tems [VdA09] that record the process in an event log. This event log
can then be used by a business analyst to understand and improve
the process. The process is typically visualized as a weighted, di-
rected graph (see Figure 1), and the analyst can explore the process
by interactive filtering.

Interactive filtering causes the graph to be shown to change
during the exploration. We can look at this from the perspec-
tive of dynamic graph drawing. In online dynamic graph draw-
ing [BBDW17], graph layouts need to be computed for a sequence
of graphs without knowing the full sequence from the beginning. In
contrast, in offline dynamic graph drawing [BBDW17], the whole
sequence of graphs is known up front. Our setting is offline in the
sense that we know which graphs we can potentially encounter,
since any filtered graph will be a subset of the data found in the
event log, but it is also online because we do not know the exact
sequence of graphs beforehand.

We want to preserve the mental map to reduce the cognitive
effort of the user when a new graph layout is displayed. In this

work, we use the three models of Misue et al. [MELS95] to repre-
sent the mental map. These models state that a layout adjustment
should preserve the direction of node n to node m for each pair of
nodes n and m, that nodes that are close together should remain
close together, and that graphical objects in a region should stay
in that region. We require our layout to remain stable to preserve
the mental map of the user, but we also require our layout to be
of high quality. Stability and quality are two conflicting require-
ments: graph layout stability helps preserve the mental map of the
user [PHG06,ZKS11], but also restricts the graph layout algorithm
in optimizing layout quality. A way of dealing with this conflict is
to allow somewhat larger changes to the layout and to make use
of animation and transitioning as a secondary approach to mental
map preservation. We believe that the combination of layout stabil-
ity and transitioning provides the best approach to preserving the
mental map.

Our proposed approach also aims at showing the underlying pro-
cess in an insightful way. Standard graph layout algorithms fail in
this aspect, because they only use the graph topology to compute
a layout and do not make use of the process data. For example,
most processes have some sort of a main path [RBRB06,AEHK10]
that can be thought of as the most frequent behavior. It would be
sensible to centralize this path in the layout and also to keep it as
straight as possible. While existing techniques fail to properly do
this [GKN15], our approach tackles this problem, see Figure 1.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-6953-173X
https://orcid.org/0000-0003-4974-7036
https://orcid.org/0000-0003-4355-7805

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

A B

C D

Figure 1: Graphs A and B show the same process as graphs C and D, respectively. The layouts in A and B are computed by the industry
standard [GKN15], where the actual process is poorly represented, while graphs C and D are computed by our novel graph layout algorithm
where the process is easy to follow. Graphs B and D are obtained after removing the edge highlighted in red from A and C. As we can see, B
differs significantly from A; especially note how nodes 1 and 2 swap vertically. Consequently, the mental map of the user is lost. On the other
hand, C and D barely differ, preserving the mental map of the user.

The contribution of our paper is a novel stable layout algorithm
for process graphs that computes layouts that intuitively repre-
sent the semantics of the process. Our algorithm is based on the
Sugiyama framework [STT81] and we introduce:

• A novel ranking algorithm;
• A novel order constraint computation algorithm;
• A novel crossing minimization algorithm called RELMINCROSS.

The scope of our work is the novel layout algorithm, which we
have implemented in the business intelligence and process mining
platform ProcessGold [1]. We make use of its existing graph vi-
sualization and interaction techniques, such as filtering, zooming,
and panning. The visual attributes of the nodes and edges, such as
color, shape, and edge width, are inherent to the ProcessGold plat-
form as well. The visual encoding and design are therefore outside
the scope of this paper.

1.1. Preliminaries

In process mining [Aal16], process data is stored in an event log,
which contains sequences of events. An event is an occurrence of
a certain activity, a recordable step in the process, e.g., Approve
invoice in an invoicing process as shown in Figure 1, at a certain
time, for a specific case. A case, e.g., a specific invoice, is then a
sequence of activities ordered by the time of their events. Repeti-
tions of the same activity are generally represented as self-loops
and do not affect the topology of the graph; therefore, we ignore
all repetitions in the sequences. In this paper, we are interested in
sets of cases that follow the same sequence of activities, which are
called variations. We denote the set of all variations by V .

A process graph is a graph G = (V,E) where V is a set of nodes
that represent activities and E a set of directed edges based on
the transitions between these activities observed in the event log,
i.e., an edge (n,m) is an ordered pair with n,m ∈ V . Each edge
e = (n,m) has an associated weight weight(e) ∈ N+, which is the
number of transitions of (n,m). We further define the complete pro-
cess graph G = (V ,E) where V and E are the sets of all nodes

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

and edges available in the event log. The user can interactively fil-
ter this graph by selecting sets of cases of interest. For any graph
Gi = (Vi,Ei) that is the result of this filtering, it then holds that
Gi ⊆ G, meaning Vi ⊆V and Ei ⊆ E.

In this work, graphs are drawn in a layered manner. Nodes are
placed on ranks, which are parallel layers, such that, for any two
nodes n and m for which rank(n) = rank(m), we have that y(n) =
y(m). The rank assignment results in a direction for every edge that
is not a self loop. An edge (n,m) is considered a forward edge when
rank(n)< rank(m) and a back edge when rank(n)> rank(m). Hi-
erarchical layouts are usually computed using an algorithm follow-
ing the Sugiyama framework [STT81], which consists of the fol-
lowing steps:

1. Cycle Removal: To obtain a Directed Acyclic Graph, cycles are
removed by reversing back edges and removing self loops.

2. Rank Assignment: Every node is assigned to a rank.
3. Node Ordering: Edges that cross multiple ranks are split up

such that no edge skips a rank. This is done by replacing these
edges by a chain of virtual nodes and edges for each rank it
crosses. Following this, the order in which nodes (both real and
virtual) are placed on the ranks is determined. This order de-
termines the number of edge crossings in the graph and should
therefore be optimized.

4. Node Positioning: x,y positions are computed for each node.
5. Spline Drawing: The edges are drawn using their virtual nodes.

1.2. Problem Description

Given an event log describing a process, we want to visualize this
process using a weighted, directed graph layout of high quality that
is readable and understandable and allows the user to quickly un-
derstand and build a mental map [MELS95, CP96] of the underly-
ing process.

We want to preserve the mental map by ensuring graph layout
stability. Stability, however, restricts the graph layout algorithm in
optimizing layout quality, which is expressed in terms of aesthetic
criteria [Pur02, HEHL13]. Depending on the domain [PCA02] and
type of graph, some aesthetic criteria are more relevant than others.
In related fields (business process visualization [RBRB06, ESK09,
AEHK10, GPZ∗14, BS15], flowchart visualization [San95, ST01],
and workflow visualization [DDK∗02, YLS∗04]), commonly con-
sidered aesthetics include: minimal edge crossings, minimal edge
bends, minimal edge length, maximal consistent flow direction, and
no node overlap. In more generic settings, the minimal area and as-
pect ratio [JMM∗16, JMS18] aesthetic criteria are often also con-
sidered, but in this work, we deem the above-listed aesthetic criteria
as more important. Additionally, since horizontal edges, i.e., edges
on a single rank, either intersect nodes or are very short, they are
hard to read and therefore are avoided. Lastly, we require our ap-
proach to be deterministic since the same data should always be
represented by the same graph layout.

Considering the above, we formulate the following requirements
for our approach:

R1 The graph layouts should intuitively represent the semantics of
the actual process:

a. The vertical order of nodes should represent the order in
which activities take place in the process.

b. The main path/structure of the process should be centralized
in the graph layout.

c. Sequential structures in the process should be as straight
and short as possible.

R2 The number of edge crossings [PCJ97, Pur00] should be as
small as possible.

R3 The number of edge bends should be as small and edge length
should be as short as possible.

R4 The graph layout should not contain any horizontal edges.
R5 The mental map [MELS95] of the user should be preserved,

i.e., the graph layout should remain as stable as possible.

2. Related Work

Graph layout stability has been addressed in many works, espe-
cially in the context of dynamic graph drawing [BBDW17]. In this
area, it is often essential to preserve the mental map of the user.
In addition, since we have processes, we consider the field of busi-
ness process visualization, which contains relevant work regarding
visualizing process semantics.

2.1. Graph Layout Stability

Approaches towards ensuring graph layout stability can be split
into different categories. Several works [BP90, HM98, Wad00] en-
sure graph layout stability by using layout constraints that re-
duce node movement. These techniques either let the user spec-
ify the constraints or the technique computes constraints based
on which parts of a layout are not affected by a graph modifi-
cation. However, in our case, users have no process information
yet and therefore cannot properly specify constraints, and com-
puting the constraints based on the previous layout results in a
non-deterministic algorithm. Online dynamic graph drawing tech-
niques [Nor95, CDBTT95, SP08, FT08] try to ensure graph sta-
bility by using the most recent graph layout as a basis for the
new layout to be computed. By doing this, however, the tech-
niques are non-deterministic. Offline dynamic graph drawing tech-
niques [DGK01,EHK∗03,GBPD04,RPD09,FWSL12] assume they
already know the complete (linear) sequence of graphs G1, ...,Gn
for which a layout must be computed. Since we do not have this
information, none of these techniques are directly applicable to our
problem. Metric optimization techniques [BW97, PKL04, LLY06]
use metrics to measure different aspects of layout quality and lay-
out stability. These metrics are often incorporated in a cost func-
tion that is then optimized. Consequently, depending on the metrics
used, a trade-off between layout quality and layout stability can be
achieved. However, it is not clear how to weigh the metrics and
which metrics should be used to obtain the best results.

2.2. Business Process Visualization

In the field of business process visualization, graph drawing tech-
niques focus on optimizing layout semantics for processes. Often,
in contrast to our work, process information is already provided
in the Business Process Execution Language (BPEL) [AAA∗07]

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

Figure 2: An overview of the system. Beige represents the current
system while blue represents our contribution.

or Business Process Model and Notation (BPMN) [CT12] lan-
guage. With respect to graph stability, some techniques [DDK∗02,
YLS∗04] are incremental and therefore suffer from the same
drawbacks as online dynamic graph drawing approaches. Effin-
ger et al. [ESK09] employ a technique based on a Bayesian
paradigm [BW97], which therefore suffers from the same draw-
backs as the metric optimization techniques.

3. Approach

In Figure 2, we show an overview of the system. Elements in beige
represent how the system currently works, while blue elements
highlight our novel contributions. The current process starts with an
event log, containing the process data, which can be interactively
filtered by the user such that only the data of interest remains. After
that, the filtered data is converted into a directed weighted graph
structure. Activities are converted into nodes, while an occurrence
of two consecutive activities contributes to the weight of the re-
spective edge. Finally, a graph layout algorithm computes a hierar-
chical layout [STT81], which is shown on the screen. This whole
process is repeated when the user applies new filters. Mining the
graph structure and the variations from the event log is outside of
the scope of this paper and is considered to be given in a process
mining setting.

Our approach is based on the Sugiyama framework [STT81],
where we use a global ranking and global order based on the
event log to preserve horizontal and vertical node order (R1a.) and
show the structure of the process (R1b. and R1c.). This enables the
preservation of the mental map [MELS95] when the user explores
subsets of the event log through filtering (R5). More specifically,
the global ranking defines a ranking for every graph Gi ⊆ G, while
the global order defines order constraints for the nodes in Gi for
every rank. The global ranking and order only have to be computed
once for an event log because they can be reused during the graph
layout computation for every Gi ⊆G. In Table 1, we show how our
approach fits into the Sugiyama framework. Note that the cycle re-
moval step is no longer required due to the use of a global ranking.
For the node positioning and spline drawing steps, we use existing
methods.

Even under minimal change, change blindness [SL97] should be
considered. Research [BB99, SIG07, SI08, ZKS11, BPF14, AP16]
shows that animation helps a user follow the changes between lay-

Sugiyama step Our Approach

Cycle Removal
Follows from Global Ranking

Rank Assignment

Node Ordering RELMINCROSS using Global Order

Node Positioning See Gansner et al. [GKNV93]

Spline Drawing See Mennens et al. [Men17]

Table 1: Our approach follows the Sugiyama framework.

outs and thereby aids mental map preservation. Therefore, similar
to other works [FE02, FT08, RPD09, ZKS11, BPF14], we imple-
ment phased animation to further improve mental map preservation
(R5)–see supplementary video.

3.1. Global Ranking

The global ranking is a partitioning of the set of all nodes V . More
specifically, the global ranking GR = (ψ0, ...,ψn) is an ordered
list of sets of nodes. Consequently, every node n ∈ V is present
on exactly one global rank ψi. Recall that we disallow horizontal
edges (R4), and therefore, GR should be computed such that no
edge (which is not a self-loop) (n,m) ∈ E is horizontal.

3.1.1. Building the global ranking

To represent the underlying process (R1), we cannot simply ap-
ply a typical ranking algorithm that determines a ranking based on
the structure of the input graph [GKN15] since that does not take
the structure of the process into account, as shown in Figures 1A
and 1B. Instead, we use the event log to discover the main structure
of the process. For example, in Figure 1, this main structure consists
of the path 〈Receive invoice, Check received invoice, Final check
of invoice, Approve invoice, Pay invoice〉. The main structure of a
process (graph) can be seen as (a set) of path(s), i.e., sequence(s)
of activities (cases). By using the cases in the event log, we already
obtain some semantic information. However, by just considering
the cases, we do not know yet which cases contribute to the main
process structure; therefore, we consider the variations. The vari-
ation v ∈ V that contains the most cases, i.e., has largest |v|, de-
scribes the most frequent process behavior. Subsequent variations
of smaller size describe less frequent behavior. Therefore, our algo-
rithm (see Algorithm 1) processes the variations V , obtained from
the event log one by one from most important to least important
(lines 2 and 3). While doing this, we incrementally build a hierar-
chical graph structure RG such that all global ranking requirements
(R4) remain satisfied (lines 4 and 5). After processing all variations,
RG contains all nodes V . Every node n in RG is positioned on a
rank, and while building RG, the rank of n may change. Therefore,
we normalize the node ranks (line 6) to make sure the smallest rank
value becomes 0. Finally, we extract the global ranking from RG
by directly using the rank values of the nodes (line 7).

In our algorithm, we start by sorting the variations based on vari-
ation importance imp(v) (line 2). We have experimented with sev-
eral definitions of variation importance and found that the sorting

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

result is quite sensitive to the choice [Men18]. In our setting, the
best performance is obtained by imp(v) = ∑w∈W w2 · |v|2, where W
is a multi-set that contains the edge weights of the edges present
in v. By squaring the weights w, we prioritize variations that con-
tain edges with a high weight, and by squaring |v|, we prioritize
variations that occur frequently overall. We then process the vari-
ations from most important to least important. This means that we
discover the most important process behavior first. By doing this,
we ensure that the vertical order of the nodes represents the order
of the nodes in the process (R1a.).

Algorithm 1 Compute Global Ranking
1: procedure COMPUTEGLOBALRANKING(V)
2: ImportanceSort(V)
3: for each v in V do
4: while s = NewSequence(v) do
5: Update RG given s
6: NormalizeRanks(RG)
7: GR← ExtractGR(RG)

A variation can be translated into a sequence of interleaved nodes
and edges. For example, let v be a variation with the sequence
〈A, B,C〉. It can be translated into 〈A, (A,B), B, (B,C),C〉. When
processing a variation, we extract all continuous sequences that
only contain nodes and/or edges that are not yet in the rank graph
RG (line 4) and add these sequences to RG based on the type of the
sequence (line 5). We distinguish six different types of sequences,
which are illustrated in Figure 3A. The distinction is made based
on the way that the head and tail of a sequence are connected or not
to RG. Furthermore, isolated nodes and edges are distinguished
as special cases. Adding a sequence to RG is done such that no
horizontal edges are created (R4). The update procedure for every
sequence type is explained below. Since types I and V, and III and
IV are added in a similar manner, we explain them together. While
processing sequences, we keep track of connected components for
the nodes/edges we have already seen.

Type I and Type V: For a sequence s that starts and ends with a
node, we place the first node in s on the lowest rank in RG and all
subsequent nodes on subsequent ranks. The node(s) in s form a new
connected component.

Type II: When we have only a single edge (n,m), this implies that
n and m have been seen before, and therefore, are already assigned
to a rank in RG. Consequently, given RG, we can encounter four
different scenarios:

1. When (n,m) is a forward edge, we can simply add it.
2. When (n,m) is a back edge and n and m are part of the same

component, we do nothing. While in some cases, it would be
possible to move m and other nodes such that we transform
(n,m) into a forward edge, this is generally not beneficial be-
cause this will make some other (more important) edges longer
(R1c.).

3. When (n,m) is an edge that connects two connected compo-
nents, we create a forward edge of minimal length by moving the
component containing m down, such that rank(m)= rank(n)+1.
The two connected components now form a single connected
component.

4. When (n,m) is a horizontal edge, we use Algorithm 2 with pa-
rameters n, m, and 1 to move m, and all nodes in RG that are
reachable via a downward graph traversal, one rank down to
create a forward edge (R4). With the downward traversal TRA-
VERSE (line 2), we discover nodes that also need to be moved
such that we do not create horizontal edges (R4). TRAVERSE ig-
nores the direction of edges, is started from m, and only edges
of length at most numRanks are traversed downward. Nodes that
are visited during the downward traversal are marked as such.
An example of running Algorithm 2 is shown in Figure 3B. On
the left and right, we have RG before and after running Algo-
rithm 2 respectively. As we can see, the horizontal edge is fixed
by moving m and all nodes reachable via a downward traversal.

Algorithm 2 Shift Nodes
1: procedure SHIFTNODES(n, m, numRanks)
2: TRAVERSE(m, numRanks)
3: for each node x ∈ RG do
4: if x was visited by TRAVERSE and x 6= n then
5: rank(x)← rank(x)+numRanks

Type III and IV: Let (n,x) and (y,m) be the first and last edge in
a Type IV and III sequence, respectively. To create forward edges
(R1a.), nodes in a Node-Edge sequence (III) are placed above m
and nodes in an Edge-Node sequence (IV) are placed below n, see
Figure 3C.

Type VI: Let s be an Edge-Edge sequence and let (n,x) and (y,m)
be the first and last edge, respectively. Similar to the Type II Single
Edge case, nodes n and m are already present in RG and, therefore,
we can encounter three different scenarios:

1. When n and m are part of different connected components,
we place the sequence of nodes on the ranks below n to cre-
ate forward edges (R1a.). Then, we turn (y,m) into a forward
edge by moving the component containing m down such that
rank(m) = rank(n)+1 (R3).

2. When rank(m) is the same as or higher than rank(n), we place
the sequence of nodes in between n and m. Depending on the
number of nodes and number of ranks between n and m, there
are two scenarios: First, if there are enough ranks between n and
m, we simply place the sequence of nodes on those free ranks
(starting on the rank below n). Second, if the number of free
ranks is too small, we make space by running Algorithm 2 with
parameters y, m, and rank(y)− rank(m)+ 1. An illustration of
this procedure is shown in Figure 3D.

3. When rank(m) is smaller than rank(n), there are quite some
ways in which we can handle this. Considering, however, that
m is already on a lower rank than n, it is very likely that m oc-
curs before n in the process. Hence, the sequence of nodes in s
represents a sequence of activities that loop back to an earlier
activity in the process. Therefore, to show that we go back in the
process (R1), we add the nodes in s such that we obtain a se-
quence of back edges. Similar to before, if there are enough free
ranks between n and m, we simply place the sequence of nodes
between n and m; otherwise, we make room using Algorithm 2
as shown in Figure 3E.

Since in the worst case, every variation v∈V contains all edges e∈

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

n

m

m

n

m

n

n

m

Forward sequence Backward sequence

I

II

III

IV

V

VI

Single Node

Single Edge

Node-Edge

Edge-Node

Node-Node

Edge-Edge

n

BA

D

m

C

n

B

A

D

m

C

n

m

Node-Edge Edge-Node

D
A

B C

E

Figure 3: Connected blue elements, where dashed nodes and edges represent an arbitrary number of nodes and edges, represent sequences
that still need to be added or are being added to RG. Beige rectangles and black arrows represent nodes and edges in RG. A) The different
types of sequences we consider. B) An illustration of running Algorithm 2 with parameters: n, m, and 1 with before and after shown left and
right, respectively. Edge (n,m) is the horizontal edge we are fixing. Note that node D is not moved down because edge (D,m) has a length
that is longer than 1. C) A visual representation of how we create forward edges when processing sequence types Type III Node-Edge or Type
IV Edge-Node. For Type III, we add the chain of nodes to the ranks above node m and for Type IV, we add the chain of nodes to the ranks
below node n. D) and E) An illustration of how sequence Type VI Edge-Edge is handled for forward and backward sequences respectively
when there are insufficient ranks between n and m. Using Algorithm 2, we obtain sequences of forward and back edges, respectively.

E, computing the variation importance imp(v) runs in O(|V ||E|),
while the sorting runs in O(|V |log|V |) [CLRS09]. While process-
ing variations, every node and edge in V and E, respectively, is
handled exactly once. Moreover, the worst case running time for
processing the sequence types, except for Type I, is O(|V |). This
leads to a total running time of O(|V |log|V |+|V ||E|+|V ||E|). The
storage complexity of RG is O(|V |+|E|) since we add all nodes
and edges to this structure. The storage complexity of the global
ranking GR is O(|V |) since it stores a global rank per node.

3.1.2. Applying the global ranking

To apply the global ranking in a layout for some Gi ⊆ G, we can
directly use GR to obtain a valid ranking. Then, since not necessar-
ily every node is present, we remove empty ranks to make sure the
graph is as compact as possible.

While E is the set of all edges available in the event log, we
can still encounter other edges when filtering out an activity. For
example, filtering out activity B from the sequence 〈A,B,C〉 results
in the edge (A,C). This is a rare occurrence, as the user generally
filters whole cases. Also, these edges can simply be added to the
graph, except when A and C happen to be on the same global rank,
leading to a horizontal edge (R4). To still be able to compute a
graph layout, these horizontal edges are added in a similar way to
Type II sequences. To preserve the node order (R5) of the global
ranking, an extra rank is created, as shown in Figure 4.

A

B

�i

�i+1

�i-1

�'i

C

A B�i

�i+1

�i-1

C

Figure 4: A horizontal edge (red) on a rank ψi is fixed. Dashed
nodes and edges represent an arbitrary set of nodes and edges on
the adjacent ranks, and circles represent virtual nodes that are cre-
ated. By moving node B down to a new rank ψ

′
i , we obtain a forward

edge. The original adjacent ranks to ψi are are not modified.

3.2. Global Order

In the Sugiyama framework [STT81], edges that cross multiple
ranks are split up into a chain of virtual nodes and edges such that
no edge skips a rank, see Figure 5. Horizontal positions are then de-
termined in the node ordering and positioning steps. First, the order
of real and virtual nodes is determined for every rank and then ac-
tual x-coordinates for the nodes are computed based on the node
order [GKNV93].

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

In traditional layout algorithms [GKNV93], the horizontal
movement of nodes is unconstrained. We, however, constrain hori-
zontal node movement in the node ordering step by first computing
a global order that defines order constraints on node pairs that are
on the same rank. Then, by using a crossing minimization algo-
rithm that adheres to the specified order constraints, we make sure
the order constraints are satisfied.

3.3. Building the global order

We define the skeleton of a process graph as the set of all node
sequences. A node sequence is a new and continuous sequence,
as discovered while processing the variations in the global rank-
ing computation (see Algorithm 1 line 4), containing at least one
node, see Figure 5C. A sequence edge is an edge part of a node se-
quence. Note that the sequence edges have been split up into chains
of virtual nodes and edges. The order of all nodes in the skeleton
is constrained by the global order. Edges that are not part of the
skeleton, however, are unconstrained. This allows us to minimize
edge crossings (R2) and improve overall layout quality (R3) while
maintaining stability in the main structure of the process (R5).

The global order defines the order in which the node sequences
should be placed for every global rank separately. To this end, based
on the global ranking and the skeleton of the process (graph), we
define the hierarchical, undirected, node sequence graph NSG =
(Vnsg,Ensg). The set of nodes Vnsg contains real sequence nodes,
representing the nodes in the skeleton (i.e., all nodes in V), and vir-
tual sequence nodes, representing the virtual nodes in the skeleton.
The set of edges Ensg consists of the virtual edges that represent the
sequence edges in the skeleton. Since every rank in the NSG maps
to a global rank, the real and virtual sequence nodes represent the
presence of a node sequence on a certain global rank. Consequently,
any order permutation of the sequence nodes n ∈ Vnsg results in a
valid global order. The graph layout in Figure 5C is computed us-
ing the global order and the corresponding node sequence graph is
shown in Figure 5B, where squares and circles represent real and
virtual sequence nodes, respectively. Note that the number in each
node corresponds to the sequence number in Figure 5C.

We consider the most frequent path as the most important be-
havior (R1b.). We call this path the backbone of the graph. Since
this path may not cover all ranks, we define the backbone as the
set of real or virtual sequence nodes, such that, for every rank r in
the node sequence graph, the sequence node that is discovered the
earliest while building the global ranking belongs to the backbone.
For example, in Figures 5A and 5B, the nodes with a red border
belong to the backbone. The backbone then forms the center of the
graph layout and all other nodes should be positioned around this
backbone (R1b.).

Let nodes(s) be the set of nodes part of a sequence s. We then de-
fine the connectedness of two sequences si and s j as conn(si,s j) =

∑e∈γ(si,s j) weight(e) where γ(si,s j) is the set of edges that start/end
in nodes(si) and start/end in nodes(s j).

Based on our requirements and the concepts of the backbone and
connectedness, we define the following requirements for our global
order:

RGO1 Connectedness: Sequences that have a high connectedness

should be placed next to or close to each other. This espe-
cially holds for node sequences that have a high connect-
edness to the backbone. By doing this, edges between adja-
cent node sequences are shorter (R3) and are less likely to
cross (R2).

RGO2 Crossings: We do not want unnecessary sequence edge in-
tersections (R2). Since these sequence edges are part of the
skeleton, they are considered more important for the user
to understand the process. For example, the node sequence
graph as illustrated in Figure 5B satisfies this property.

RGO3 Balance: Given the backbone, for every rank, we wish to
balance the sequence nodes around the backbone. By do-
ing this, the backbone ends up in the center of the node
sequence graph (R1, R1b.).

Algorithm 3 Compute Global Order
1: procedure COMPUTEGLOBALORDER(NSG(Vnsg,Ensg))
2: for each rank r in ranking(NSG) do
3: ConnectednessSort(r)
4: NSG′← NSG \ backbone
5: comp← FindComponents(NSG′)
6: Balance(comp)

Our global order algorithm is shown in Algorithm 3.
ConnectednessSort(r) on line 3 sorts the sequence nodes n
on rank r based on their connectedness to the backbone as shown
in Figure 5A. Then, to both minimize crossings in the skeleton
and to balance the graph (R2 and R1b.), we first find a set of
connected components (see line 5). Since we want to balance
around the backbone, we find components in NSG′, which is the
NSG without the backbone nodes (see line 4). These components
can be placed on either side of the backbone without causing
extra crossings. Then, Balance(comp) on line 6 considers the
components from large to small, where the size of a component
is defined by the number of nodes in the component. For every
component, Balance(comp) moves the component to the left of
the backbone if doing so improves the balance, i.e., if the ratio
between the number of nodes left and right of the backbone
improves. Additionally, when moving a component to the left
of the backbone, the connectedness sort order is preserved, i.e.,
sequence nodes that are closer to the backbone than other sequence
nodes (on the same rank) always remain closer. Figure 5B shows
the NSG after balancing the sequence nodes. The global order can
now be obtained directly from the node order in the NSG.

Sorting by connectedness takes O(|Vnsg|log|Vnsg|), since we sort
all sequence nodes. Finding all connected components can be done
by traversing the NSG, which takes O(|Vnsg|+|Ensg|) time. Bal-
ancing takes O(|Vnsg|) since we have at most |Vnsg| components.
Therefore, the worst case running time of the global order com-
putation is O(|Vnsg|log|Vnsg|+|Ensg|). The NSG contains all nodes
in V and contains at most E edges. Hence, the storage complexity
of the NSG is O(|V |+k|E|) where k is the average number of vir-
tual nodes per edge. Note that we can have at most |V | ranks and
therefore k is at most |V |. In practice, however, k is much smaller.
The global order stores the order for all nodes and sequence edges,
resulting in a storage complexity of O(|V |+|E|).

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

A B C

0

30

0

0

0

0

0

0

4

5

5

8

2

2

2

2

2

9

�0

�1

�2

�3

�4

�5

�6

�7

�8

�9

6

781

1

1 0 8

2

�10

0

30

0

0

0

0

0

0

4

5

5

8

2

2

2

2

2

9

6

781

1

10 8

2

Figure 5: Every ψi represents a global rank. In A and B, squares and circles represent real and virtual sequence nodes, respectively. The
numbers match the numbering in C and represent the order in which the node sequences are discovered by the global ranking algorithm.
Sequence nodes with a red border belong to the backbone. A) The node sequence graph after sorting each rank based on backbone connect-
edness. B) The final node sequence graph. C) Illustration of the order in which the node sequences (outlined in red) are discovered by the
global ranking algorithm. The number next to a red outline indicates the order of discovery. Red squares represent virtual sequence nodes.

3.4. Crossing Minimization

During the node ordering step for some graph Gi ⊆ G, the global
order defines order constraints for both real and virtual sequence
nodes for every rank ψi. Note that non-sequence virtual nodes are
unconstrained and can, therefore, be placed in any order. Ideally,
we want to compute an order permutation for every rank such that
we both satisfy the order constraints and minimize the number of
edge crossings (R2). Unfortunately, edge crossing minimization
is NP-Complete [EMW86]. Therefore, in practice, algorithms re-
duce edge crossing minimization to a sequence of one-sided two-
level [GKNV93, For04] crossing minimization problems. In this
work, we present a novel crossing minimization algorithm where
we have a sequence of constrained one-sided two-level crossing
minimization problems [For04]. More specifically, the computed
order permutation should adhere to the global order.

Algorithm 4 Crossing Minimization
1: procedure CROSSING MINIMIZATION(G)
2: order← InitOrder()
3: best← order
4: for i← 0 to MaxIterations do
5: wMedian(order, i)
6: Transpose(order)
7: if crossing(order)< crossing(best) then
8: best← order
9: return best

Our algorithm, RELMINCROSS (see Algorithm 4), follows the
same steps as the crossing minimization algorithm by Gansner
et al. [GKNV93] and therefore has a similar running time. In our
algorithm, INITORDER is replaced and WMEDIAN and TRANS-
POSE are modified. More specifically, the sort and exchange op-
erations in WMEDIAN and TRANSPOSE respectively are modified
such that swapping nodes that are constrained by the global or-
der is disallowed. A difference in running time is that Gansner
et al. [GKNV93] run Algorithm 4 twice – with different initial or-
ders – to obtain the best results. Since INITORDER for RELMIN-
CROSS always computes the same initial node order, this is not nec-
essary, improving the overall running time.

Given some graph Gi ⊆ G, our INITORDER computes init(n) ∈
[−1,1] values for all nodes n ∈ Vi and then determines the initial
order by sorting the nodes on init(n). Negative and positive init
values represent nodes left and right of the backbone, respectively,
and backbone nodes have an init value of 0. Intuitively, initializa-
tion is done such that the skeleton of the process graph is initialized
based on the global order and remaining edges are placed based on
the skeleton.

Using the fixed order given by the global order, INITORDER first
computes the init values for all sequence nodes for each rank sepa-
rately. First, the backbone node on every rank is identified and as-
signed value 0. Following this, the sequence nodes left and right of
the backbone node are uniformly assigned init values in the ranges
[−1,0) and (0,1], respectively, based on the global order. In Fig-
ure 6, we show a graph layout that was computed using RELMIN-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

CROSS. As we can see, all backbone nodes have init value 0, and
nodes further to the left and right, with respect to the backbone,
have lower and higher init values, respectively. Following this, IN-
ITORDER computes the init values for all non-sequence virtual
nodes. Let (x,y) be a non-sequence edge. The init(n) values of the
virtual nodes belonging to (x,y) are then computed as follows:

init(n) =

init(x) |init(x)|> |init(y)|
init(y) |init(x)| ≤ |init(y)|, init(y) 6= 0,

init(x) 6= 0
ε init(x) = init(y) = 0,

n is part of a back edge
-ε init(x) = init(y) = 0,

n is part of a forward edge

Each non-sequence virtual node n is given the init value of its start
or end node furthest away from the backbone to ensure edges are
as straight and short as possible (R1c. and R3). For example, in
Figure 6, the non-sequence virtual nodes and their computed init(n)
values are shown in green. If both init(x) and init(y) are equal to
zero, the edge starts and ends at the backbone. If we were to set
init(n) to zero for these nodes, then it is ambiguous on which side of
the backbone n should be initially placed. Therefore, based on the
direction of the edge, we set init(n) to a small number ε such that,
during the crossing minimization itself, edges will not arbitrarily
cross the backbone (R2).

As discussed in Section 3.1.2, in rare cases we have to add
rank(s) to fix horizontal edges that may occur due to filtering.
Adding such a rank results in longer edges and therefore in ex-
tra virtual nodes (see the circles in Figure 4). These virtual nodes
do not have a defined global order and are therefore always uncon-
strained.

Once all init values have been computed, every rank is sorted
by these values. Note that the init values of sequence nodes on
the same rank are always unique. The init values of non-sequence
virtual nodes, however, can be the same. When this happens, the
nodes are sorted based on the length of their edges where we place
the longer edge further away from the backbone to reduce edge
crossings (R2). If the edge lengths are the same, the most important
edge, i.e., with the highest weight, is placed closest to the backbone
(R1b.). Observe that the global order constraints are satisfied after
sorting.

After initializing the order, edge crossings can still be present.
Therefore, the remainder of the algorithm iteratively uses WME-
DIAN and TRANSPOSE to reduce the remaining edge crossings (R2)
without breaking any order constraints (R5).

4. Evaluation

We evaluate our approach both quantitatively and qualitatively.
For both evaluations, we compare our layouts to the output of
dot [GKN15], which is part of the Graphviz software [2] and is
based on the work of Gansner et al. [GNV88, GKNV93]. Because
dot provides high quality graph drawings for a variety of cases and
since it can be easily integrated, it is the current industry standard
used to draw hierarchical directed graphs that represent a process.

Figure 6: A graph layout computed using RELMINCROSS with
ε = 0.001. Red and green numbers indicate the init(n) values for
the sequence and non-sequence nodes respectively. Red squares
represent virtual sequence nodes while green squares represent
non-sequence virtual nodes.

We first introduce quality and stability metrics [DG02] that
‘measure’ aesthetic criteria and the amount of change, respectively.

Definition 4.1 (Quality Metric) Given a graph G = (V,E) for
which a layout has been computed. A quality metric is a function
QMλ : G→ R+

0 that quantifies a certain graph layout aesthetic. A
unique name representing the metric is λ. A lower value for a qual-
ity metric implies that G adheres more to the aesthetic criterion.
For example, for a graph layout G that has no edge crossings, the
number of edge crossings is denoted by QMcrossings(G) = 0.

Definition 4.2 (Stability Metric) Given two graphs G = (V,E) and
G′ = (V ′,E′) for which layouts have been computed. A stability
metric is a function SMλ : (G,G′)→ R+

0 that quantifies the amount
of change between G and G′ depending on what we measure. A
unique name representing the metric is λ. When SMλ = 0, there is
no difference between G and G′ for metric λ.

Based on a literature investigation and given our requirements, we
selected the following metrics (the exact specifications are provided
in the supplementary material):

• Running Time QMtime(G): time in milliseconds required to
compute a layout.
• Edge Crossings QMcrossings(G): the sum of multiplied edge

weights of edge pairs that cross.
• Average Edge Length QMavg_length(G): the weighted average

edge length.
• Edge Bends QMbends(G): the sum of the number of edge bends

in an edge multiplied by the respective edge weight.
• Back Edges QMback_edges(G): the sum of the edge weights of

the back edges in the layout.
• Flow Direction QM f low(G): the ratio between edge segments

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

that are (approximately) horizontal and edge segments that are
(approximately) vertical.
• Area QMarea(G): the area of the layout.
• Relative Euclidean SMrel_eucl(G,G′): the sum of the change in

relative distance between node pairs that are in both layouts.
• Hausdorff SMhausdorff(G,G′): the maximum of the distances

moved by nodes that are in both layouts.
• Orthogonal SMorthogonal(G,G′): the sum of the change in direc-

tion (angle) between node pairs that are in both layouts.
• Epsilon-Cluster SMcluster(G,G′): the epsilon-cluster change

between the two layouts.
• Edge Shape SMedge_shape(G,G′): the change in the shape of the

edges.

4.1. Quantitative Evaluation

The quality and stability metrics allow us to quantitatively com-
pare our algorithm and dot. We use 13 datasets (see supplementary
material), which represent real-world processes. For every dataset,
we ran 500 tests on both methods. Each test involved a pair of ran-
domly generated graphs G1,G2 ⊆ G, which were obtained by ran-
domly removing a subset of the edges E and then removing all
nodes n ∈ V that became disconnected. Consequently, G1 and G2
are random sub-graphs of G. Since all tests are independent and the
sample sizes are large, we can assume that the test results are nor-
mally distributed (per algorithm, per dataset). To determine which
algorithm performs statistically better, we applied a one-way t-test
(significance level α = 0.05) for every metric (per dataset).

The aggregated results are shown in Figure 7. The two algo-
rithms are on the rows, and the columns (except the last three) rep-
resent the metrics. A cell value is a count that expresses for how
many of the datasets the related algorithm performed significantly
better. For example, our algorithm is significantly faster (see col-
umn (QM) Time) for all 13 datasets. The last three columns present
aggregated values: qSum the sum of all quality metric counts, sSum
the sum of all stability metric counts, and Sum the total sum of all
counts.

The results show that our algorithm outperforms dot signifi-
cantly. For the stability metrics, our algorithm performs signifi-
cantly better on all datasets. This was expected because we specif-
ically designed our algorithm to compute stable layouts. Interest-
ingly, our algorithm also outperforms dot for most of the quality
metrics, despite the trade-off between layout stability and layout
quality. The only two metrics where dot performs better (or equally
well) are Average Edge Length and Area. This reflects the design
of dot, which tries to keep edges short and produce compact lay-
outs [GKNV93].

The global ranking and global order are reused during every
graph layout computation and therefore only need to be computed
once for a given dataset. Therefore, the total running time needed to
compute a single graph layout is the sum of running time complex-
ities of each of the algorithmic steps listed in Table 1. Assigning
ranks to nodes can be done directly based on the global ranking
and therefore takes O(|V |) time. In contrast, dot needs to run both
a cycle removal and a rank assignment algorithm [GKNV93]. As
discussed in Section 3.4, our crossing minimization algorithm has a

Figure 7: The combined statistical test results.

0 100 200 300 400 500 600
Edges

0

20000

40000

60000

80000

100000

120000

140000

Ti
m

e
(m

s)

BPI2018

Our Algorithm
Dot

Figure 8: The running time results for the BPI2018 dataset

similar running time as the algorithm of Gansner et al. [GKNV93].
Overall, compared to dot, we only use the same algorithm for
the node positioning step. The running time results for one of the
datasets (BPI2018) are shown in Figure 8. The plot shows that our
algorithm is substantially faster than dot for larger graphs. Running
time results for the remaining datasets are provided in the supple-
mentary material.

4.2. Qualitative Evaluation

To determine which algorithm is preferred by actual users, we also
performed a user study in which 14 process mining experts partic-
ipated. Participants used both our algorithm and dot and answered
questions about their experience. The results show that partici-
pants preferred our algorithm both for its layout quality and sta-
bility. Participants found our graph layouts more readable because
the main path is positioned in the center and edges are straighter,
which makes them easier to follow. Additionally, participants stated
that the stability and animated transitions made it easier to follow
changes. We provide more details of the experimental setup and the
results in the supplementary material.

5. Discussion

The global ranking and global order constraints achieve the goal
of an intuitive representation of the semantics of the process (R1),
as demonstrated in Figures 1C and 1D. There are also downsides
to constraining the layout by the global ranking and global order,
however. One aspect is that the ranking and order are computed for
the unfiltered process data, which may result in suboptimal layouts

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

for certain filters. Another issue is that the strict ranking may result
in unnecessary extra ranks, which take up vertical space but do not
improve the layout or the interpretation of the process. An example
can be seen in Figures 1C and 1D. The global ranking puts Post-
process invoice below the rank of Checked and approved and above
the rank of Final check of invoice. However, this is not actually
necessary as Post-process invoice and Checked and approved could
be on the same rank in this graph. An issue of the global order is
that it can result in unbalanced layouts. In Figures 1C and 1D, for
example, the global order enforces Repeat payment process right of
the edge (Approve invoice, Pay invoice). The layout would be more
balanced if this node were placed left of this edge.

The global ranking and global order help to preserve the mental
map of the user. The global ranking constrains the vertical order of
the nodes, and the global order constrains the horizontal movement
of nodes. Together, these constraints reduce changes in the layout
and keep the layout stable (R5). A disadvantage is that these con-
straints can cause extra edge crossings. We partially solve this prob-
lem by only constraining sequence nodes and edges. Non-sequence
edges can be positioned freely, allowing the graph layout algorithm
to reduce edge crossings.

6. Conclusion

We have proposed a novel layout algorithm for processes, which
is based on the Sugiyama framework. Our approach makes use of
process data in the event log and provides three main contributions.
The first is a novel ranking algorithm that computes a global rank-
ing based on the process data. By using the global ranking during
graph layout computation, we obtain layouts that intuitively repre-
sent the actual process. Also, the global ranking stabilizes the lay-
out by constraining the vertical order of nodes. The second contri-
bution is a constraint computation algorithm that computes a global
order based on the process data. The global order constrains the
horizontal movement of nodes and is used in our third contribu-
tion: a crossing minimization algorithm that maintains the global
order constraints. Finally, to make it easier for a user to follow the
changes between two graph layouts, we use phased animation to
further help preserve the user’s mental map.

We evaluated our approach by a quantitative and qualitative eval-
uation. The quantitative evaluation shows that our novel algorithm
produces graph layouts of higher quality and higher stability than
the industry standard. Additionally, our algorithm is significantly
faster, especially for larger process graphs. In the qualitative evalu-
ation, we found similarly favorable results for our approach.

As part of future work, we plan to extend our approach to pro-
cesses with multiple backbones. In this paper, we have implicitly
assumed that there is only a single backbone by just considering the
most frequent path. While this is often the case in practice, it does
not hold for all processes. This would require a method to mine
multiple subprocesses. Furthermore, the global ranking may create
undesirable extra ranks. It would be interesting to investigate tech-
niques in which node constraints (in our case, the global ranking)
are ‘relaxed’ in some scenarios (similar to Görg et al. [GBPD04]).
This may prevent the creation of these extra ranks but would also
reduce layout stability.

Acknowledgments
This research work was carried out at ProcessGold in cooperation
with the Eindhoven University of Technology.

References

[1] ProcessGold - business intelligence and process mining platform.
https://processgold.com/en/. Accessed: 2019-23-02. 2

[2] Graphviz - graph visualization software. http://www.
graphviz.org/. Accessed: 2018-05-12. 9

[AAA∗07] ALVES A., ARKIN A., ASKARY S., BARETTO C., BLOCH
B., CUBERA F., FORD M., GOLAND Y., GUIZAR A., KARTHA N.,
LIU C., KHALAF R., KONIG D., MARIN M., MEHTA V., THATTE S.,
VAN DER RIJN D., YENDLURI P., YIU A.: Web Services Business
Process Execution Language, Apr. 2007. 3

[Aal16] AALST W. M. P. V. D.: Process Mining: Data Science in Action.
Springer, Apr. 2016. 1, 2

[AEHK10] ALBRECHT B., EFFINGER P., HELD M., KAUFMANN M.:
An automatic layout algorithm for BPEL processes. In Proceedings of
the 5th International Symposium on Software Visualization (New York,
NY, USA, 2010), SOFTVIS ’10, ACM, pp. 173–182. 1, 3

[AP16] ARCHAMBAULT D., PURCHASE H. C.: Can animation support
the visualisation of dynamic graphs? Information Sciences 330 (Feb.
2016), 495–509. 4

[BB99] BEDERSON B. B., BOLTMAN A.: Does animation help users
build mental maps of spatial information? In Proc. IEEE Symp. Infor-
mation Visualization (InfoVis ’99) (1999), pp. 28–35. 4

[BBDW17] BECK F., BURCH M., DIEHL S., WEISKOPF D.: A taxon-
omy and survey of dynamic graph visualization. Computer Graphics
Forum 36, 1 (Jan. 2017), 133–159. 1, 3

[BP90] BÖHRINGER K.-F., PAULISCH F. N.: Using constraints to
achieve stability in automatic graph layout algorithms. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (New
York, NY, USA, 1990), CHI ’90, ACM, pp. 43–51. 3

[BPF14] BACH B., PIETRIGA E., FEKETE J. D.: GraphDiaries: Ani-
mated transitions and temporal navigation for dynamic networks. IEEE
Transactions on Visualization and Computer Graphics 20, 5 (May 2014),
740–754. 4

[BS15] BERNSTEIN V., SOFFER P.: Identifying and quantifying visual
layout features of business process models. In Enterprise, Business-
Process and Information Systems Modeling, Lecture Notes in Business
Information Processing. Springer, Cham, June 2015, pp. 200–213. 3

[BW97] BRANDES U., WAGNER D.: A bayesian paradigm for dynamic
graph layout. In Graph Drawing (Sept. 1997), Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, pp. 236–247. 3, 4

[CDBTT95] COHEN R., DI BATTISTA G., TAMASSIA R., TOLLIS I.:
Dynamic graph drawings: Trees, series-parallel digraphs, and planar ST-
digraphs. SIAM Journal on Computing 24, 5 (Oct. 1995), 970–1001.
3

[CLRS09] CORMEN T. H., LEISERSON C. E., RIVEST R. L., STEIN C.:
Introduction to Algorithms, 3rd edition ed. The MIT Press, Cambridge,
Mass, July 2009. 6

[CP96] COLEMAN M. K., PARKER D. S.: Aesthetics-based graph layout
for human consumption. Softw. Pract. Exper. 26, 12 (Dec. 1996), 1415–
1438. 3

[CT12] CHINOSI M., TROMBETTA A.: BPMN: An introduction to the
standard. Computer Standards & Interfaces 34, 1 (Jan. 2012), 124–134.
4

[DDK∗02] DIGUGLIELMO G., DUROCHER E., KAPLAN P., SANDER
G., VASILIU A.: Graph layout for workflow applications with ILOG
JViews. In Graph Drawing (Aug. 2002), Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, pp. 362–363. 3, 4

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://processgold.com/en/
http://www.graphviz.org/
http://www.graphviz.org/

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

[DG02] DIEHL S., GÖRG C.: Graphs, they are changing. In Graph
Drawing (Aug. 2002), Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, pp. 23–31. 9

[DGK01] DIEHL S., GÖRG C., KERREN A.: Preserving the mental map
using foresighted layout. In In Proc. Joint Eurographics–IEEE TCVG
Symp. Visualization (VisSym’01) (2001), Springer Verlag, pp. 175–184.
3

[EHK∗03] ERTEN C., HARDING P. J., KOBOUROV S. G., WAMPLER
K., YEE G.: GraphAEL: Graph animations with evolving layouts.
In Graph Drawing (Sept. 2003), Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, pp. 98–110. 3

[EMW86] EADES P., MCKAY B., WORMALD N. C.: On an edge cross-
ing problem. In Proc. 9th Australian Computer Science Conf. (1986),
pp. 327–334. 8

[ESK09] EFFINGER P., SIEBENHALLER M., KAUFMANN M.: An inter-
active layout tool for BPMN. In 2009 IEEE Conference on Commerce
and Enterprise Computing (July 2009), pp. 399–406. 3, 4

[FE02] FRIEDRICH C., EADES P.: Graph drawing in motion. Journal of
Graph Algorithms and Applications, Volume 6 (2002). 4

[For04] FORSTER M.: A fast and simple heuristic for constrained two-
level crossing reduction. In Graph Drawing (Sept. 2004), Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, pp. 206–216. 8

[FT08] FRISHMAN Y., TAL A.: Online dynamic graph drawing. IEEE
Transactions on Visualization and Computer Graphics 14, 4 (July 2008),
727–740. 3, 4

[FWSL12] FENG K. C., WANG C., SHEN H. W., LEE T. Y.: Co-
herent time-varying graph drawing with multifocus+context interaction.
IEEE Transactions on Visualization and Computer Graphics 18, 8 (Aug.
2012), 1330–1342. 3

[GBPD04] GÖRG C., BIRKE P., POHL M., DIEHL S.: Dynamic graph
drawing of sequences of orthogonal and hierarchical graphs. In Graph
Drawing (Sept. 2004), Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, pp. 228–238. 3, 11

[GKN15] GANSNER E. R., KOUTSOFIOS E., NORTH S.: Drawing
graphs with dot. Tech. rep., Graphviz, Jan. 2015. 1, 2, 4, 9

[GKNV93] GANSNER E. R., KOUTSOFIOS E., NORTH S. C., VO K. P.:
A technique for drawing directed graphs. IEEE Transactions on Software
Engineering 19, 3 (Mar. 1993), 214–230. 4, 6, 7, 8, 9, 10

[GNV88] GANSNER E. R., NORTH S. C., VO K. P.: DAG–a program
that draws directed graphs. Software: Practice and Experience 18, 11
(Nov. 1988), 1047–1062. 9

[GPZ∗14] GSCHWIND T., PINGGERA J., ZUGAL S., REIJERS H. A.,
WEBER B.: A linear time layout algorithm for business process models.
Journal of Visual Languages & Computing 25, 2 (Apr. 2014), 117–132.
3

[HEHL13] HUANG W., EADES P., HONG S.-H., LIN C.-C.: Improving
multiple aesthetics produces better graph drawings. Journal of Visual
Languages & Computing 24, 4 (Aug. 2013), 262–272. 3

[HM98] HE W., MARRIOTT K.: Constrained Graph Layout. Constraints
3, 4 (Oct. 1998), 289–314. 3

[JMM∗16] JABRAYILOV A., MALLACH S., MUTZEL P., RÜEGG U.,
VON HANXLEDEN R.: Compact Layered Drawings of General Directed
Graphs. arXiv:1609.01755 [cs] (Aug. 2016). arXiv: 1609.01755. 3

[JMS18] JÜNGER M., MUTZEL P., SPISLA C.: A Flow Formula-
tion for Horizontal Coordinate Assignment with Prescribed Width.
arXiv:1806.06617 [cs] (June 2018). arXiv: 1806.06617. 3

[LLY06] LEE Y.-Y., LIN C.-C., YEN H.-C.: Mental map preserving
graph drawing using simulated annealing. In Proc. 2006 Asia-Pacific
Symp. Information Visualisation (APVis’06) (Darlinghurst, Australia,
2006), pp. 179–188. 3

[MELS95] MISUE K., EADES P., LAI W., SUGIYAMA K.: Layout ad-
justment and the mental map. Journal of Visual Languages & Computing
6, 2 (June 1995), 183–210. 1, 3, 4

[Men17] MENNENS R.: The implementation of a Sugiyama Layout algo-
rithm. Tech. rep., Eindhoven University of Technology, 2017. 4

[Men18] MENNENS R.: Graph layout stability in process mining.
Master’s thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, Sept. 2018. 5

[Nor95] NORTH S. C.: Incremental layout in DynaDAG. In Graph Draw-
ing (Sept. 1995), Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, pp. 409–418. 3

[PCA02] PURCHASE H. C., CARRINGTON D., ALLDER J.-A.: Em-
pirical evaluation of aesthetics-based graph layout. Empirical Software
Engineering 7, 3 (Sept. 2002), 233–255. 3

[PCJ97] PURCHASE H. C., COHEN R. F., JAMES M. I.: An Experimen-
tal Study of the Basis for Graph Drawing Algorithms. J. Exp. Algorith-
mics 2 (Jan. 1997). 3

[PHG06] PURCHASE H. C., HOGGAN E., GÖRG C.: How important is
the ”mental map”? – an empirical investigation of a dynamic graph lay-
out algorithm. In Graph Drawing (Sept. 2006), Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, pp. 184–195. 1

[PKL04] PINAUD B., KUNTZ P., LEHN R.: Dynamic graph drawing
with a hybridized genetic algorithm. In Adaptive Computing in Design
and Manufacture VI. Springer, London, 2004, pp. 365–375. 3

[Pur00] PURCHASE H. C.: Effective information visualisation: a study
of graph drawing aesthetics and algorithms. Interacting with Computers
13, 2 (Dec. 2000), 147–162. 3

[Pur02] PURCHASE H. C.: Metrics for graph drawing aesthetics. Journal
of Visual Languages & Computing 13, 5 (Oct. 2002), 501–516. 3

[RBRB06] RINDERLE S. B., BOBRIK R., REICHERT M. U., BAUER T.:
Business process visualization – use cases, challenges, solutions. In Pro-
ceedings of the Eighth International Conference on Enterprise Informa-
tion Systems (ICEIS’06): Information System Analysis and Specification
(May 2006), INSTICC PRESS. 1, 3

[RPD09] REITZ F., POHL M., DIEHL S.: Focused animation of dynamic
compound graphs. In 13th Int. Conf. Information Visualisation (July
2009), pp. 679–684. 3, 4

[San95] SANDER G.: A fast heuristic for hierarchical Manhattan layout.
In Graph Drawing (Sept. 1995), Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, pp. 447–458. 3

[SI08] SHANMUGASUNDARAM M., IRANI P.: The effect of animated
transitions in zooming interfaces. In Proceedings of the Working Con-
ference on Advanced Visual Interfaces (New York, NY, USA, 2008), AVI
’08, ACM, pp. 396–399. 4

[SIG07] SHANMUGASUNDARAM M., IRANI P., GUTWIN C.: Can
smooth view transitions facilitate perceptual constancy in node-link di-
agrams? In Proceedings of Graphics Interface 2007 (New York, NY,
USA, 2007), GI ’07, ACM, pp. 71–78. 4

[SL97] SIMONS D. J., LEVIN D. T.: Change blindness. Trends in Cog-
nitive Sciences 1, 7 (Oct. 1997), 261–267. 4

[SP08] SAFFREY P., PURCHASE H.: The ”mental map” versus ”static
aesthetic” compromise in dynamic graphs: A user study. In Proc. 9th
Conf. Australasian User Interface (Darlinghurst, Australia, 2008), AUIC
’08, pp. 85–93. 3

[ST01] SIX J. M., TOLLIS I. G.: Automated visualization of process
diagrams. In Graph Drawing (Sept. 2001), Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, pp. 45–59. 3

[STT81] SUGIYAMA K., TAGAWA S., TODA M.: Methods for visual
understanding of hierarchical system structures. IEEE Transactions on
Systems, Man, and Cybernetics 11, 2 (1981), 109–125. 2, 3, 4, 6

[VdA09] VAN DER AALST W. M.: Process-aware information systems:
lessons to be learned from process mining. In Transactions on Petri Nets
and Other Models of Concurrency II. Springer, 2009, pp. 1–26. 1

[Wad00] WADDLE V.: Graph layout for displaying data structures.
In Graph Drawing (Sept. 2000), Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, pp. 241–252. 3

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

R.J.P. Mennens & R.J. Scheepens & M.A. Westenberg / A stable graph layout algorithm for processes

[YLS∗04] YANG Y., LAI W., SHEN J., HUANG X., YAN J., SETIAWAN
L.: Effective visualisation of workflow enactment. In Advanced Web
Technologies and Applications (Apr. 2004), Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, pp. 794–803. 3, 4

[ZKS11] ZAMAN L., KALRA A., STUERZLINGER W.: The effect of
animation, dual view, difference layers, and relative re-layout in hierar-
chical diagram differencing. In Proceedings of Graphics Interface 2011
(GI’11) (2011), Canadian Human-Computer Communications Society,
pp. 183–190. 1, 4

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

